

PROFILES – WP3: Stakeholders Involvement and Interaction

PROFILES

Curricular Delphi Study on Science Education

Interim Report on the Second Round of the UP Working Group

João Paiva, Carla Morais, José Barros

Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal

September 2012

Table of Contents

1	Introduction6
2	Leading questions of the second round6
3	Design of the questionnaire and method of data analysis7
	3.1 Questionnaire and data analysis of part I7
4	Data collection and sample of the second round of the UP PROFILES Curricular Delphi
	Study on Science Education9
5	Results11
	5.1 Results Part I11
	5.1.1 - Priority assessments of the total sample and the different sample groups 11
	5.1.2 - Practice assessments of the total sample and the different sample groups .17
	5.1.3 - Priority-practice differences of the total sample and the different sample
	groups
	5.2 Results part II28
	5.2.1 Numbers of completed form sheets concerning part II of the questionnaire .28
	5.2.2 – Hierarchical cluster analysis28
6	Discussion32
	6.1 Discussion part I35
	6.2 Discussion part II35
Re	ferences

List of Tables

Table 1: Sample structure and response rate of the second round of the UP PROFILES
Curricular Delphi Study10
Table 2: Detailed sample structure of the second round of the UP Curricular Delphi Study
on Science Education11
Table 3: Highest and lowest priority assessment means. 12
Table 4. Mean and significance values regarding the priority assessment between groups
concerning contexts motives and situations
Table 5: Mean and significance values regarding the priority assessment between groups
concerning basic concepts and topics14
Table 6: Mean and significance values regarding the priority assessment between groups
concerning fields and perspectives15
Table 7: Mean and significance values regarding the priority assessment between groups
concerning qualifications
Table 8. Mean and significance values regarding the priority assessment between groups
concerning methods
Table 9: Highest and lowest practice assessment means. 17
Table 10: Mean and significance values regarding the practice assessment between
groups concerning contexts, motives and situations
Table 11: Mean and significance values regarding the practice assessment between
groups concerning basic concepts and topics19
Table 12: Mean and significance values regarding the practice assessment between
groups concerning fields and perspectives
groups concerning news and perspectives
Table 13: Mean and significance values regarding the practice assessment between
groups concerning qualifications21
Table 14: Mean and significance values regarding the practice assessment between
groups concerning methods22
Table 15: Highest and lowest priority-practice difference means

Table 16: Mean and significance values regarding the priority-practice difference between
groups concerning contexts, motives and situations24
Table 17: Mean and significance values regarding the priority-practice difference between
groups concerning basic concepts and topics25
Table 18: Mean and significance values regarding the priority-practice difference
between groups concerning fields and perspectives26
Table 19: Mean and significance values regarding the priority-practice difference
between groups concerning qualifications27
Table 20: Mean and significance values regarding the priority-practice difference between
groups concerning methods28
Table 21: Numbers of completed form sheets – total sample and sample groups Erro!
Marcador não definido.

List of Figures

Figure 1: Extract from part I of the UP questionnaire of the second round available
online8
Figure 2: Design of part II of the UP questionnaire of the second round available online9
Figure 3: Dendrogram (method: ward linkage and squared Euclidian distance)

Marcador não definido.

1 Introduction

The overall objective of the PROFILES Curricular Delphi Study on Science Education is to engage different as many stakeholders as possible as experts in reflecting on contents and aims of science education in general as well as in outlining aspects and approaches of modern and desirable science education such as Inquiry Bases Science Education. The PROFILES Curricular Delphi Study on Science Education thus aims at illustrating contours of desirable science education in the opinions of different selected groups from society. The outcomes of this study will be used to prepare continuous teacher training courses (WP5) "aiding the implementation and dissemination of PROFILES ideas, intentions and objectives to facilitate the uptake of innovative science teaching and the enhancement of scientific literacy" (PROFILES Consortium, 2010, p. 20).

Hence, the main and general focus of the PROFILES Curricular Delphi Study on Science Education is on aspects of science education that are considered relevant and pedagogically desirable for the individual in the society of today and in the near future (Schulte & Bolte, 2011).

In the first interim report on the UP PROFILES Curricular Delphi Study on Science Education, the framework, aims, structure, concepts and methods of this study as well as the results from the first round of this study were introduced (Paiva, Morais & Barros, 2011).

The second round of the PROFILES Curricular Delphi Study on Science Education is about considering and reflecting – also critically – the findings from the first round which resulted from the analyses of the individually formulated responses of the participants. For this purpose and in accordance with the Delphi method, the categories that were established in the course of the analyses of the first round are fed back to the participants in the second round and combined with specific tasks and questions.

In this way, the findings from the first round are specified and concretized on the basis of the stakeholders' answers in the second round of this Delphi study (Bolte, 2003, 2007).

Subject of the second round is the identification of aspects and fields where priority and realization in science education practice drift apart in the opinions of the participants. Another subject of the second round is to identify – by means of cluster analyses – empirically based conceptions regarding desirable and contemporary science education that the participants consider as important and relevant.

The framework, the procedure and the results of the second round of the UP PROFILES Curricular Delphi Study on Science Education will be presented in this interim report.

2 Leading questions of the second round

A central aspect in the second round of the PROFILES Curricular Delphi Study on Science Education is addressing questions which resulted from the analyses in the first round (Bolte, 2003, 2008; Häußler, Frey, Hoffmann, Rost, & Spada, 1980; Linstone & Turoff, 1975; Mayer, 1992). In addition, the central questions of the PROFILES Curricular Delphi Study on Science Education are addressed as well in order to attain more differentiated and specified findings and insights. The second round considers therefore, amongst others, especially the following questions:

Part I:

- Which priorities regarding aspects of desirable science education can be derived from the participants' responses?
- To what extent are the respective aspects in the participants' opinions realized in science education practice?
- What kind of priority-practice differences can be identified in the participants' assessments?

Part II:

• What kind of empirically based conceptions regarding desirable and contemporary science education can be identified on the basis of the participants' statements?

With reference to the differentiations already administered in the first round, these questions are considered both regarding the total sample and the differences between the sample groups that are considered in the course of the PROFILES Curricular Delphi Study on Science Education (students, teachers, education researchers and scientists).

3 Design of the questionnaire and method of data analysis

Following the curricular Delphi method, we sent to all participants from the first round of the UP PROFILES Curricular Delphi Study on Science Education a two-part questionnaire with a list of categories regarding desirable science education that were identified in the course of the first round, the respective questions and a glossary with a description and explanation of the categories.

3.1 Questionnaire and data analysis of part I

In part I of round 2, the participants were asked to assess the categories established in the course of the first round analyses of the UP PROFILES Curricular Delphi Study on Science Education from two different perspectives. On the one hand they were asked to prioritize the given categories and on the other hand to assess to what extent the aspects expressed by the categories are realized in science education practice.

For the assessment of the categories, the participants were in part I of the questionnaire presented with a five-tier scale. The coding of the answers, following the five-tier scale, ranged from 1 to 5 (1: "very low priority" / "to a very low extent"; 2: "low priority" / "to a low extent"; 3: "rather middle priority" / "to a middle extent"; 4: "high priority" / "to a high extent"; 5: "very high priority" / "to a very high extent").

The questionnaire, part I, that UP PROFILES used in the Second Round of Delphi Study on Science Education is available online in <u>https://docs.google.com/spreadsheet/viewform?formkey=dDB6VFhjVW02eDIKRId1MFRFWjdJRXc6MQ</u>

The precise wording of the task, the questions and an example regarding the scale of part I of the questionnaire are shown in Figure 1.

Information on the first part of the questionnaire

*Obrigatório

Part I:

Situations, contexts and motives

Please assess the following categories according to the two questions stated.

	1	2	3	4	5
Education / general pers. development	0	0	0	0	0
Emotional personality development	0	0	0	0	0
Intellectual personality development	0	0	0	0	0
Students' interests	0	0	0	0	0
Curriculum framework	0	0	0	0	0
Out-of-school learning	0	0	0	0	0
Media / current issues	0	0	0	0	0
Nature / natural phenomena	0	0	0	0	0
Medicine / health	0	0	0	0	0
Technology	0	0	0	0	0

Figure 1: Extract from part I of the UP questionnaire of the second round available online.

The data in part I of the round 2 questionnaire was analyzed through descriptive and variance analytical methods. The analyses took into account both the priority and practice assessments individually as well as the priority-practice differences by subtracting the practice values from the priority values.

3.2 Questionnaire and data analyses of part II

As scientific literacy is a complex construct, its enhancement is thus not possible by referring to the different aspects only individually. Promoting scientific literacy is only possible if the complexity of the scientific literacy construct is accounted for in content, method and conception. Therefore, the empirically identified aspects need to be considered in relation to content, method and conception. The UP PROFILES Curricular Delphi Study on Science Education accounts for these considerations in part II of the second round.

In order to identify concepts regarding science education that are considered important, the participants were in part II of round 2 asked to combine from the given set of 80 categories those categories that seem especially important to them *in their combination*.

The questionnaire, part II, that UP PROFILES used in the Second Round of Delphi Study on Science Education is available online in <u>https://docs.google.com/spreadsheet/viewform?formkey=dDIZOFdtSThjdjZsbVVPVHNXeGNLX0E6MQ</u>

The precise wording of the task and the questions in part II of the questionnaire are shown in Figure 2.

Curricular Delphi Study on Science Education 2nd round / part II

*Obrigatório

Categories of part I

(Situations, contexts and motives that can be taken as a basis to stimulate science-related educational processes)

Part 1*

Please note: every category combination should contain at least one and at most five categories per column.

- Education / general pers. development
- Emotional personality development
- Intellectual personality development
- Students' interests
- Curriculum framework
- Out-of-school learning
- Media / current issues
- Nature / natural phenome-na
- Everyday life
- Medicine / health
- Technology
- Society / public concerns
- Global references

Figure 2: Design of part II of the UP questionnaire of the second round available online.

The data of part II of the round 2 questionnaire was analyzed by means of hierarchical cluster analyses, using the Ward method and squared Euclidian distance.

4 Data collection and sample of the second round of the UP PROFILES Curricular Delphi Study on Science Education

As the Delphi method is based on a fixed group of participants throughout the different rounds (Linstone & Turoff, 1975), only the 86 stakeholders who participated in the first round of the UP PROFILES Curricular Delphi Study on Science Education were asked in written and electronic form to fill out the PROFILES Delphi questionnaire of the second round between March 2012 and May 2012.

Table 1 shows the UP sample structure and participation rate with regard to the drop-out between the first and the second round. It can be seen that out of the 86 participants from the first round, a total number of 54 participants (63% of the participants from the first round) took part in the second round.

		Number of responses					
Sa	Round 1		Round 2		Participation rate		
Students		20		20		100%	
	Education Students	9		4		44%	71%
Taashara	Trainee teachers	1	- 38	1	32	100%	
Teachers	Science Teachers	28		25		89%	
	Teacher Educators	4		2		50%	
Education Res	Education Researchers		2			50%	
Scientists		2		1		50%	
People who are not directly involved with sciences		20		0		0%	
Total		86		ŗ	54	63%	

Table 1: Sample structure and response rate of the second round of the UP PROFILES Curricular Delphi Study

It can also be seen that, with a response rate of 100%, all participants from the first round in the group of *Students* also took part in the second round. The participation rate in the group of *Education Researchers* and *Scientists* decreased for an half (50%) in comparison with the participants in the first round. Due to drop-out in the sub-samples, the group of *Teachers* features a participation rate of 71%. The highest drop-out between the first and the second round took place in the sub-sample of *Education Students* with a response rate of 44%. The lowest drop-out between the first and the second round took place in the sub-sample of *Science Teachers* with a response rate of 89%. The overall response rate of 63 % for the total sample and the remaining sample size for round 2 are satisfying (in comparison with the first round).

A detailed overview of the sample structure of the second round of the UP Curricular Delphi Study on Science Education is shown in Table 2.

	Total number		Percentage		
Students	Students at school without advanced science courses			270/	
Students	Students at school with advanced sciences courses		20	37%	
	Education Students	4			
Taashars	Trainee teachers	1 32 25		59, 3%	
reachers	Science Teachers				
	Teacher Educators	2			
Education Researchers			1	1,9%	
Scientists			1	1,9%	
Total	Total				

Table 2: Detailed sample structure of the second round of the UP Curricular Delphi Study on Science Education.

The total number of subjects was 54. Of this, with a number of 32 participants, the group of *teachers* makes up a total of 59, 3%. The group of *students* consists of 20 participants altogether, constituting the second largest group of the sample (37%). The next groups were significantly smaller, with the *education researchers* group and *scientists* groups having both only 1 respondent (1,9%).

5 Results

5.1 Results Part I

In the following parts, selected results from the descriptive-statistical analyses with regard to the priority assessments are shown. The descriptive and variance-statistical analyses were made on the data basis of the four different sample groups (students, teachers, educators and scientists). The following descriptions will focus on the responses of the total sample as well as on the different sample groups. It's important to underline that we didn't include the groups of science education researchers and scientists in the comparison because we had a very low participation rate in the groups. So this fact justifies why there are only the two groups in the comparison that can be seen in the following pages.

5.1.1 - Priority assessments of the total sample and the different sample groups

First of all, the Table 3 shows the first details of priority assessments among the whole sample. This table shows the 10 categories with highest and lowest mean values in descending order, considering all the participants across all groups.

Priority Assessment					
Categories	Mean values	Std. Deviation			
Analysing / drawing conclusions	4,62	,745			
Motivation and interest	4,50	,728			
Applying knowledge, thinking creatively / abstractly	4,48	,700			
Experimenting	4,48	,754			
Working self-dependently / structuredly	4,46	,670			
Critical questioning	4,46	,828			
Judgement /opinion-forming / reflection	4,46	,670			
Comprehension / understanding	4,44	,752			
Science - chemistry	4,42	,723			
Acting reflectedly and responsibly	4,40	,774			
Astronomy / space system	3,71	,825			
History of the sciences	3,69	,781			
Thermodynamics	3,65	,814			
Electrodynamics	3,63	,886			
Learning at stations	3,62	,911			
Role play	3,52	1,057			
Zoology	3,46	,851			
Emotional personality development	3,42	1,091			
Botany	3,25	,883			
Learning in mixed-aged classes	3,17	1,150			

Table 3: Highest and lowest priority assessment means.

The highest mean value with regard to the priority the participants assigned to this aspect appears with the category "Analysing/Drawing conclusions" (mean value = 4,62). Considering the top ten categories, it can be noted that they refer to aspects rather related to everyday life and general education and skills. The lowest mean values appear associated with natural sciences and three learning methods, with the category "Learning in mixed-aged classes" appearing at the bottom (mean value = 3,17).

The next tables (Table 4 to Table 8) show the mean values of the different sample groups, followed by the comparisons and the respective significance values (independent sample T-test). The suggested inclusion of a new group *adults* didn't yell any different significance values to the displayed comparisons so it was subsided. Due to the nature of the sample, both the *Scientists* and *Education Researchers* group were left out of the analysis, leaving a simple comparison between *Teachers* (n = 32) and *Students* (n = 20).

Only the significant test values indicating statistically significant differences are displayed (p<.05). The tables are divided into different parts according to the different parts of the category system: contexts, motives and situations (Table 4), basic concepts and topics (Table 5), fields and perspectives (Table 6), qualifications (Table 7), and methods (Table 8).

Apart from some exceptions, it can be seen that the different sample groups generally consider the same categories as relevant and important. However, as the tables also show, the mean values differ in a number of pair comparisons among the sample groups in a statistically significant way from each other.

Categories regarding contexts, motives and situations	Group	Sig. Values	Mean values	Std. Deviation
Education (general ners development	Students	-	4,35	,745
Education / general pers. development	Teachers		4,28	,634
Emotional norsenality development	Students	-	3,70	,923
Emotional personality development	Teachers		3,25	1,164
Intellectual personality development	Students	-	4,10	,718
intellectual personality development	Teachers		4,56	,619
Students' interests	Students	-	4,10	1,071
Students Interests	Teachers		4,16	,767
Curriculum from our or le	Students	-	3,95	,826
Curriculum tranlework	Teachers		3,72	,581
Out of school loorning	Students	-	3,65	,813
Out-or-school learning	Teachers		4,16	,847
Madia / aurrent issues	Students	-	3,85	,745
Media / current issues	Teachers		3,69	,738
	Students	-	3,60	,883
Nature / natural phenomena	Teachers		4,41	,665
Madicine / health	Students	-	4,40	,821
Medicine / health	Teachers		4,00	,718
Tashaalagu	Students	-	3,80	,894
Тесппоюду	Teachers		4,03	,740
Everyday life	Students	-	3,65	1,226
Everyday life	Teachers		4,38	,793
Society / public concerns	Students	-	3,75	1,372
Society / public concerns	Teachers		3,84	,808,
Clobal references	Students	-	3,85	,813
Global references	Teachers		3,88	,751
Occupation / caroor	Students	-	4,00	1,026
	Teachers		3,84	,884
Science hislogy	Students	-	4,25	,851
Science - biology	Teachers		4,41	,615
Science chemistry	Students	-	4,05	,826
	Teachers		4,66	,545
Science physics	Students	-	4,05	,759
	Teachers		4,63	,554
Science interdisciplinarity	Students	-	4,15	,587
Science - interdiscipiliality	Teachers		4,34	,745

Table 4: Mean and significance values regarding the priority assessment between groups concerning contexts, motives and situations.

Categories regarding basic concepts and topics	Group	Sig. Values	Mean values	Std. Deviation
Mottor / porticle concept	Students	-	3,90	,912
Matter / particle concept	Teachers		4,28	,634
Structure / function / properties	Students	-	3,80	,894
Structure / function / properties	Teachers		4,19	,592
Chamical reactions	Students	-	3,85	,745
Chemical reactions	Teachers		4,31	,644
[norm/	Students	-	4,20	,768
Energy	Teachers		4,28	,729
Sustam	Students	-	4,10	,718
System	Teachers		3,81	,738
Interaction	Students	-	4,20	,696
Interaction	Teachers		3,84	,987
Development / mouth	Students	-	4,15	,745
Development / growth	Teachers		3,66	,937
Madala	Students	-	3,60	,995
Models	Teachers		4,00	,718
Townsingles	Students	-	3,55	,945
Terminology	Teachers		4,03	,647
Colontific inquine	Students	-	3,95	,759
Sciencinc inquiry	Teachers		4,41	,665
Limits of scientific knowledge	Students	-	4,15	,933
Limits of scientific knowledge	Teachers		4,09	,856
Cuele of matter	Students	-	4,00	,858
	Teachers		3,84	,574
Food / putrition	Students	-	4,10	,912
	Teachers		3,88	,793
Health (modicing	Students	-	4,35	,875
	Teachers		3,88	,707
Matter in overvday life	Students	-	3,95	,887
	Teachers		4,34	,602
Environment	Students	-	3,95	1,050
	Teachers		4,38	,660
Industrial processes	Students	-	3,80	,834
	Teachers		3,84	,723
Safaty and ricks	Students	-	3,90	1,071
Saicly and lisks	Teachers		4,19	,780
Occupations / occupational fields	Students	-	4,00	,795
	Teachers		3,75	,718

 Table 5: Mean and significance values regarding the priority assessment between groups concerning basic concepts and topics.

Categories regarding fields and perspectives	Group	Sig. Values	Mean values	Std. Deviation
Determi	Students	-	3,00	,858
Botany	Teachers		3,41	,875
Zaalamu	Students	-	3,55	,826
20010gy	Teachers		3,41	,875
luman hielen	Students	-	4,40	,754
Human biology	Teachers		4,31	,644
Constiss / molocular hislogy	Students	-	4,40	,681
Genetics / molecular biology	Teachers		4,09	,689
Microbiology	Students	-	4,05	,826
NICLODIOLOGY	Teachers		3,53	,879
Evolutionary biology	Students	-	4,10	,852
	Teachers		3,63	1,040
Nourabiology	Students	-	4,10	,788
Neurobiology	Teachers		3,75	1,047
Ecology	Students	-	3,80	1,152
Ecology	Teachers		4,28	,813
Cororal and inorganic chamistry	Students	-	3,80	,696
Gereral and morganic chemistry	Teachers		4,19	,644
Organia chomistry	Students	-	3,85	,813
Organic chemistry	Teachers		4,00	,762
Applytical Chamistry	Students	-	3,65	1,089
	Teachers		3,94	,878,
Dischomistry	Students	-	4,10	,852
Biochemistry	Teachers		4,03	1,031
Thermodynamics	Students	-	3,65	,745
Thermodynamics	Teachers		3,66	,865
Electrodynamics	Students	-	3,60	,883
Electrodynamics	Teachers		3,66	,902
Machanics	Students	-	3,65	1,089
Mechanics	Teachers		4,34	,701
Atomic (nuclear physics	Students	-	3,75	,910
Atomic / Inclear physics	Teachers		3,91	,963
Astronomy (space system	Students	-	3,65	,813
Astronomy / space system	Teachers		3,75	,842
Earth sciences	Students	-	4,05	,759
	Teachers		4,19	,821
Mathematics	Students	-	4,05	,826
Mathematics	Teachers		4,41	,615
Interdisciplinarity	Students	-	4,15	,813
	Teachers		4,56	,759
Current scientific research	Students	-	4,25	,851
	Teachers		4,28	,729
Consequences of technological	Students	-	4,25	1,020
developments	Teachers		4,28	,813
History of the sciences	Students	-	3,70	,801
	Teachers		3,69	,780
Ethics / values	Students	-	4,25	,967
Luncs / Values	Teachers		4,38	,833

 Table 6: Mean and significance values regarding the priority assessment between groups concerning fields and perspectives.

Categories regarding qualifications	Group	Sig. Values	Mean values	Std. Deviation
Motivation and interact	Students	-	4,30	,865
Motivation and interest	Teachers		4,63	,609
Critical quactioning	Students	-	4,20	1,105
Citical questioning	Teachers		4,63	,554
Acting reflectedly and responsibly	Students	-	4,15	,933
Acting reflectedly and responsibly	Teachers		4,56	,619
Knowledge about science-related	Students	-	3,90	,788
occupations	Teachers		3,97	,782
Creasialized knowledge	Students	-	3,85	,671
Specialized knowledge	Teachers	1	3,75	,622
Community (understanding	Students	-	4,20	,951
Comprehension / understanding	Teachers		4,59	,560
Applying knowledge, thinking creatively	Students	-	4,25	,851
/ abstractly	Teachers	1	4,63	,554
had a second data in the second se	Students	-	4,30	,733
Judgement /opinion-forming / reflection	Teachers	1	4,56	,619
The diam in forward to a	Students	-	4,10	,553
Finding information	Teachers	1	4,41	,665
Deading communication	Students	-	4,05	,686
Reading comprehension	Teachers	1	4,47	,671
	Students	-	3,95	,826
Communication skills	Teachers		4,09	,734
	Students	-	3,85	,813
Social skills / teamwork	Teachers	1	4,34	,653
	Students	-	3,85	,875
Empathy / sensibility / emotional skills	Teachers		3,91	,893
Demonstrian / auronana / abaamisticin	Students	-	4,10	,852
Perception / awareness / observation	Teachers		4,28	,729
Formulating scientific questions /	Students	-	4,00	,918
hypotheses	Teachers		4,63	,609
Experimenting	Students	-	4,20	,894
Experimenting	Teachers		4,66	,602
	Students	-	4,30	,979
Analysing / drawing conclusions	Teachers		4,81	,471
	Students	-	4,20	,696
working self-dependently / structuredly	Teachers		4,63	,609

 Table 7: Mean and significance values regarding the priority assessment between groups concerning qualifications.

Categories regarding methods	Group	Sig. Values	Mean values	Std. Deviation
Cooperative Learning	Students	-	4,00	,973
Cooperative Learning	Teachers		4,25	,672
Learning in mixed aged classes	Students	-	3,25	1,070
Learning in mixed-aged classes	Teachers		3,13	1,212
Interdisciplinary learning	Students	-	4,05	,826
interdisciplinary learning	Teachers		4,22	,608
	Students	-	3,90	,788
Inquily-based science learning	Teachers		4,53	,621
Learning at stations	Students	-	3,45	,887
	Teachers		3,72	,924
Polo play	Students	-	3,75	1,209
које ріаў	Teachers		3,38	,942
Discussion / debate	Students	-	3,95	1,099
	Teachers		4,09	,734
Lising now modia	Students	-	4,00	,973
Using new media	Teachers		4,03	,740

 Table 8: Mean and significance values regarding the priority assessment between groups concerning methods.

5.1.2 - Practice assessments of the total sample and the different sample groups

Once again, the next Table shows the first details of priority assessments among the whole sample. This table shows the 10 categories with highest and lowest mean values in descending order.

Practice Assessment				
Categories	Mean values	Std. Deviation		
Mathematics	4,15	,937		
Matter / particle concept	3,98	,852		
Energy	3,94	,873		
Human biology	3,92	,882		
Science - physics	3,88	,922		
Science - biology	3,83	,923		
Chemical reactions	3,81	,864		
Science - chemistry	3,81	,908		
Structure / function / properties	3,77	,731		
Environment	3,73	,952		
Occupations / occupational fields	3,02	,939		
Occupation / career	2,98	1,213		
Society / public concerns	2,98	1,038		
Empathy / sensibility / emotional skills	2,98	1,093		
History of the sciences	2,92	1,082		
Biochemistry	2,90	1,071		
Neurobiology	2,83	1,080		
Emotional personality development	2,79	1,054		
Role play	2,63	1,172		
Learning in mixed-aged classes	2,59	1,321		
Table O. Ulabaat and lawaat neating assessment means				

Table 9: Highest and lowest practice assessment means.

The highest mean value with regard to practice assessment by the participants appears with the category "Mathematics" (mean value = 4,15). Considering the top ten categories, it can be noted that they refer to basic concepts and specialized fields, showing that the teaching

strategies focus strongly on the content, rather than the method. Confirming this, we see the lowest mean values appear associated with learning methods, with the category "Learning in mixed-aged classes" appearing at the bottom again (mean value = 2,59).

The following tables show once again a comparison of the mean values of the different sample groups and the respective significance regarding the comparisons of the mean values in the different sample groups. The previous constraints apply.

At a quick glance, the category which presents the largest number of differences concerns is the "Qualifications". It seems this is the area where teachers and students most disagree.

Only the significant test values indicating statistically significant differences are displayed (p<.05). The tables are divided into different parts according to the different parts of the category system: contexts, motives and situations (Table 10), basic concepts and topics (Table 11), fields and perspectives (Table 12), qualifications (Table 13) and methods (Table 14).

Categories regarding contexts, motives and situations	Group	Sig. Values	Mean values	Std. Deviation
	Students	.003	3,95	,999
Education / general pers. development	Teachers		3,16	,808,
	Students	-	3,25	1,118
Emotional personality development	Teachers		2,50	,916
Intellectual personality development	Students	.011	3,45	1,146
intellectual personality development	Teachers		3,41	,712
Students' interests	Students	-	3,15	1,226
Students Interests	Teachers		2,97	,999
	Students	-	3,55	,999
Curriculum framework	Teachers		3,81	,896
Out of exhapt logging	Students	-	3,25	1,372
Out-or-school learning	Teachers		2,91	,928
	Students	-	3,30	1,174
Media / current issues	Teachers		3,06	,801
Nature / natural phenomena	Students	-	3,75	,967
	Teachers		3,59	,712
Medicine / health	Students	-	3,95	,999
	Teachers		3,13	,793
Taskaslari	Students	-	3,35	1,040
rechnology	Teachers		3,81	,859
Freezenders life	Students	-	3,65	1,182
Everyday life	Teachers		3,22	,792
Society / public concerns	Students	.041	3,35	1,089
Society / public concerns	Teachers		2,75	,950
Clobal references	Students	.003	3,80	1,056
Global references	Teachers		3,00	,803
Occupation (career	Students	<.001	3,70	1,129
	Teachers		2,53	1,047
Science biology	Students	-	4,00	,918
Science - biology	Teachers		3,72	,924
Science - chemistry	Students	-	3,90	,912
	Teachers		3,75	,916
Science - nhysics	Students	-	4,10	,912
	Teachers		3,75	,916
Science - interdisciplinarity	Students	.001	3,75	,967
	Teachers		2,81	,965

Table 10: Mean and significance values regarding the practice assessment between groups concerning contexts, motives and situations.

Categories regarding basic concepts and topics	Group	Sig. Values	Mean values	Std. Deviation
Matter (norticle concert	Students	-	3,95	,759
Matter / particle concept	Teachers		4,00	,916
Structure (function / mean article	Students	-	3,80	,768
Structure / function / properties	Teachers		3,75	,718
Chamical maations	Students	-	3,80	,951
Chemical reactions	Teachers		3,81	,821
Freezer	Students	-	3,95	,826
Energy	Teachers	1	3,94	,914
Sustan	Students	-	3,75	,786
System	Teachers	1	3,31	,965
Interaction	Students	-	3,95	,945
Interaction	Teachers	1	3,47	,803
Dougloomant (growth	Students	.015	3,55	,945
Development / growth	Teachers		2,88	,942
Madala	Students	-	3,50	,946
Models	Teachers	1	3,31	,896
Terminology	Students	-	3,45	,945
	Teachers		3,72	,991
Colontific inquine	Students	.043	3,60	,940
Sciencinguiry	Teachers		2,94	1,216
Limits of scientific knowledge	Students	.025	3,50	1,147
Limits of scientific knowledge	Teachers		2,75	1,136
Cyclo of matter	Students	-	3,55	,826
	Teachers		3,34	,701
Food / putrition	Students	-	3,40	,995
Food / Hutrition	Teachers		2,91	,893
Health (modicing	Students	<.001	4,00	,918
	Teachers		2,97	,933
Mattar in overvdev life	Students	.025	3,75	,851
Matter in everyddy llie	Teachers		3,19	,859
Environment	Students	-	3,95	1,050
Environment	Teachers		3,59	,875
Inductrial processos	Students	.027	3,50	1,000
	Teachers		2,84	1,019
Safaty and ricks	Students	.037	3,80	1,056
Salety and fisks	Teachers		3,19	,965
Occupations / occupational fields	Students	.003	3,50	1,000
occupations / occupational news	Teachers		2,72	,772

Table 11: Mean and significance values regarding the practice assessment between groups concerning basic concepts and topics.

Categories regarding fields and perspectives	Group	Sig. Values	Mean values	Std. Deviation
Detanu	Students	-	3,30	,979
Botany	Teachers		3,28	,924
Zaalam	Students	-	3,40	,883
20010gy	Teachers		3,13	1,008
Human biology	Students	-	4,15	,875
Human blology	Teachers		3,78	,870
Constiss / malacular higlamy	Students	.002	3,95	,945
Genetics / molecular biology	Teachers		3,16	,767
Microbiology	Students	.004	3,55	,945
Microbiology	Teachers		2,72	<i>,</i> 958
Evolutionany biology	Students	.006	3,55	,945
Evolutionary biology	Teachers		2,81	<i>,</i> 859
Nourahiology	Students	.005	3,35	,813
Neurobiology	Teachers		2,50	1,107
Ecology	Students	-	3,45	,945
Ecology	Teachers		3,53	,842
Cororal and inorganic chamistry	Students	-	3,35	,813
Gereral and morganic chemistry	Teachers		3,53	<i>,</i> 950
Organic chamistry	Students	-	3,35	,988
Organic chemistry	Teachers		3,41	,946
Applytical Chamistry	Students	-	3,35	1,137
Analytical Chemistry	Teachers		3,22	,832
Biachomistry	Students	.001	3,50	1,100
вюспепнісну	Teachers		2,53	,879
Thormodynamics	Students	-	3,40	1,273
Thermodynamics	Teachers		3,16	1,051
Floctrodynamics	Students	.050	3,45	1,276
Liectiodynamics	Teachers		2,78	1,099
Machanics	Students	-	3,35	1,309
Mechanics	Teachers		3,72	1,023
Atomic / nuclear physics	Students	-	3,65	,988
Atomic / Inclear physics	Teachers		3,25	1,078
Astronomy / space system	Students	-	3,70	,865
Astronomy / space system	Teachers		3,50	,916
Farth sciences	Students	-	3,80	,834
	Teachers		3,47	,803
Mathematics	Students	<.001	3,60	1,046
Wathematics	Teachers		4,50	,672
Interdisciplinarity	Students	.016	3,65	,988
interdisciplinanty	Teachers		2,91	1,088
Current scientific research	Students	.038	3,45	1,099
	Teachers		2,78	1,099
Consequences of technological	Students	-	3,45	1,276
developments	Teachers		3,13	1,040
History of the sciences	Students	.011	3,40	1,142
HISTOLY OF THE SCIENCES	Teachers		2,63	,942
Ethics / values	Students	-	3,45	1,356
Ethics / Values	Teachers		2,84	,954

 Table 12: Mean and significance values regarding the practice assessment between groups concerning fields and perspectives.

Categories regarding qualifications	Group	Sig. Values	Mean values	Std. Deviation
Mativation and interact	Students	-	3,70	1,174
wouvation and interest	Teachers		3,25	1,164
Critical quantianing	Students	.028	3,75	1,251
	Teachers		3,00	1,107
Acting reflectedly and responsibly	Students	.016	3,85	1,182
Acting reflectedly and responsibly	Teachers		2,91	1,146
Knowledge about science-related	Students	.001	3,90	1,071
occupations	Teachers		2,88	1,008
	Students	.008	3,65	,933
Specialized knowledge	Teachers		2,91	,963
	Students	-	3,70	1,031
comprehension / understanding	Teachers		3,16	1,019
Applying knowledge, thinking	Students	.001	3,75	1,118
creatively / abstractly	Teachers		2,72	1,023
Judgement /opinion-forming /	Students	.002	3,75	,910
reflection	Teachers		2,69	1,230
	Students	.002	4,00	,918
Finding information	Teachers		3,06	1,045
	Students	.019	3,90	,718
Reading comprehension	Teachers		3,28	,991
	Students	.027	3,65	1,182
communication skills	Teachers		2,94	1,045
	Students	-	3,45	1,191
Social skills / teamwork	Teachers		3,00	1,107
Frencher / considerational skills	Students	.027	3,40	1,142
Empathy / sensibility / emotional skills	Teachers		2,72	,991
Derecation / awareness / absorvation	Students	.032	3,70	,801
Perception / awareness / observation	Teachers		3,13	,976
Formulating scientific questions /	Students	.015	3,65	,988
hypotheses	Teachers		2,88	1,129
Everimenting	Students	-	3,55	1,099
	Teachers		3,47	,950
Applycing / drawing conclusions	Students	.017	3,85	,988
Anarysing / urawing conclusions	Teachers		3,16	,987
Working self-dependently /	Students	.028	3,65	1,040
structuredly	Teachers		3,00	,984

 Table 13: Mean and significance values regarding the practice assessment between groups concerning qualifications.

Categories regarding methods	Group	Sig. Values	Mean values	Std. Deviation
Cooperative Learning	Students	-	3,50	1,147
cooperative Learning	Teachers		3,13	1,070
	Students	-	2,95	1,234
	Teachers		2,25	1,320
Interdisciplinary learning	Students	.026	3,45	,999
	Teachers		2,78	1,039
	Students	.009	3,75	,716
Inquiry-based science learning	Teachers		2,94	1,216
Learning at stations	Students	-	3,25	1,070
	Teachers		2,97	1,121
Polo alay	Students	.042	3,05	1,234
Role play	Teachers		2,38	1,070
Discussion / debate	Students	-	3,30	,801
	Teachers		2,97	1,121
Licing now modia	Students	.034	3,80	1,056
	Teachers		3,13	1,100

Table 14: Mean and significance values regarding the practice assessment between groups concerning methods.

5.1.3 - Priority-practice differences of the total sample and the different sample groups

In this part, selected results from the descriptive-statistical analyses with regard to the prioritypractice differences (PPD) are shown. The priority-practice differences result from subtracting the practice values from the priority values (xP-xR = Δ PPD). The following passages will focus on the description and comparison of results regarding the total sample as well as different groups.

First, special attention will be paid to those aspects that feature particularly large or small differences between the assessments of their priority and their actual realization in educational practice because these extreme difference values inform about especially big or small discrepancy between priority and reality.

The calculated priority-practice differences show that many categories feature large differences between their priority and practice values. In order to illustrate the spectrum of this observation, the next table displays the ten highest and ten lowest priority-practice differences in the total sample.

Priority-Practice Difference				
Categories	Mean values	Std. Deviation		
Applying knowledge, thinking creatively / abstractly	1,41	1,447		
Judgement /opinion-forming / reflection	1,30	1,525		
Interdisciplinarity	1,28	1,309		
Current scientific research	1,24	1,273		
Working self-dependently / structuredly	1,20	1,088		
Interdisciplinary learning	1,19	1,245		
Formulating scientific questions / hypotheses	1,15	1,485		
Science - interdisciplinarity	1,15	1,219		
Analysing / drawing conclusions	1,15	1,139		
Students' interests	1,15	1,188		
Technology	,31	,987		
Chemical reactions	,30	1,002		
Energy	,26	,994		
Matter / particle concept	,20	,959		
Zoology	,19	,933		
Terminology	,17	1,145		
Mathematics	,15	,856		
Curriculum framework	,15	1,035		
Astronomy / space system	,11	,984		
Botany	-,06	,979		

Table 15: Highest and lowest priority-practice difference means.

It can be seen in a first view that only the category "Botany" is perceived by the participants as positively implemented when compared to the priority assessment (mean value = -0,6). All the other categories show negative differences (which means they have a positive difference value), although small ones.

The following tables show once again a comparison of the mean values of the different sample groups and the respective significance values (test with and independent sample T-Test) regarding the comparisons of the mean values in the different sample groups. The previous constraints apply once again.

Only the significant test values indicating statistically significant differences are displayed. The tables are divided into different parts according to the different parts of the category system: contexts, motives and situations (Table 16), basic concepts and topics (Table 17), fields and perspectives (Table 18), qualifications (Table 19) and methods (Table 20).

Categories regarding contexts, motives and situations	Group	Sig. Values	Mean values	Std. Deviation
Education / general pers.	Students	.003	,65	,745
development	Teachers		,84	1,322
Emotional personality	Students	-	,65	1,137
development	Teachers		,66	1,153
Intellectual personality	Students	.011	1,05	,887
development	Teachers		1,03	,897
Students' interests	Students	-	1,10	1,165
Students interests	Teachers		1,22	1,237
Curriculum from owork	Students	-	,00,	1,124
	Teachers		,22	1,008
Out of school loarning	Students	-	,90	1,294
Out-of-school learning	Teachers		,88	1,157
Madia / aurrant issues	Students	-	,50	1,318
Media / current issues	Teachers		,59	1,043
Natura (natural phonomona	Students	-	,35	,875
Nature / natural phenomena	Teachers		,53	,950
Madiaina (haalth	Students	-	,85	1,040
Medicine / nearth	Teachers		,56	,914
Technology	Students	-	,30	,923
Тесппоюду	Teachers		,25	,950
Even day life	Students	-	,50	,889
Everyday llie	Teachers		,88	,976
Cociety (public concerns	Students	.041	,85	,988
Society / public concerns	Teachers		,91	,856
Clobal references	Students	.003	,20	,834
Global references	Teachers		,78	,941
Occupation / caroor	Students	<.001	1,10	1,483
	Teachers		,91	1,304
Science biology	Students	-	,60	1,188
Science - biology	Teachers		,47	,671
Science chemistry	Students	-	,35	,933
Science - chemistry	Teachers		,78	,941
Science physics	Students	-	,20	1,105
	Teachers		,78	1,039
Science interdisciplinguity	Students	.001	1,00	1,170
Science - Interdisciplinanty	Teachers		1,28	1,276

Table 16: Mean and significance values regarding the priority-practice difference between groups concerning contexts, motives and situations.

Categories regarding basic concepts and topics	Group	Sig. Values	Mean values	Std. Deviation
Matter / particle concept	Students	-	-,05	,826
Matter / particle concept	Teachers		,41	,946
Structure / function / properties	Students	-	,00,	,918
structure / function / properties	Teachers		,41	,911
Chamical reactions	Students	-	,15	,813
chemical reactions	Teachers		,44	1,105
Enormy	Students	-	,35	1,089
Ellergy	Teachers		,22	,941
System	Students	-	,50	1,100
System	Teachers		,41	,911
Interaction	Students	-	,25	1,118
Interaction	Teachers		,47	1,077
Dovelopment / growth	Students	.015	,80	1,399
Development / growth	Teachers		,56	,914
Models	Students	-	,55	1,146
Niddels	Teachers		,59	,837
Terminology	Students	-	,10	1,252
	Teachers		,22	1,099
Scientific inquiry	Students	.043	,75	1,410
Scientific inquiry	Teachers		1,22	1,289
Limits of scientific knowledge	Students	.025	1,10	1,294
Limits of scientific knowledge	Teachers		1,06	1,076
Cycle of matter	Students	-	,40	1,046
	Teachers		,41	,979
Food / nutrition	Students	-	,90	,641
	Teachers		,75	1,270
Health / medicine	Students	<.001	,85	,875
nearthy medicine	Teachers		,59	1,132
Matter in everyday life	Students	.025	,55	,826
Matter in everyddy me	Teachers		1,00	1,107
Environment	Students	-	,55	1,099
Livioiment	Teachers		,47	1,191
Industrial processes	Students	.027	,80	1,056
	Teachers		,78	1,008
Safety and ricks	Students	.037	,95	1,317
	Teachers		,56	1,134
Occupations / occupational fields	Students	.003	,90	1,165
	Teachers		,72	,772

Table 17: Mean and significance values regarding the priority-practice difference between groups concerning basic concepts and topics.

Categories regarding fields and perspectives	Group	Sig. Values	Mean values	Std. Deviation
Determi	Students	-	-,10	,641
Botany	Teachers		,06	1,105
Zaalami	Students	-	,00,	,725
20010gy	Teachers		,28	1,054
Usersa kialaan	Students	-	,35	,933
Human biology	Teachers		,44	,914
Constinue / malagular biology	Students	.002	,80	,834
	Teachers		,75	,916
Microbiology	Students	.004	,75	,786
Microbiology	Teachers		,59	,946
Evolutionary biology	Students	.006	,80	1,152
	Teachers		,59	1,103
Neurobiology	Students	.005	1,00	,973
Neurobiology	Teachers		1,13	1,040
Factory	Students	-	,65	,745
Ecology	Teachers		,75	1,047
Covered and incorganic chamictry	Students	-	,50	,688
Gereral and inorganic chemistry	Teachers		,59	,979
 standarsztatur, 	Students	-	,70	,733
Organic chemistry	Teachers		,47	,950
	Students	-	,60	,995
Analytical Chemistry	Teachers		,72	1,114
	Students	.001	1,20	1,281
Biochemistry	Teachers		1,19	1,176
	Students	-	,20	1,056
Thermodynamics	Teachers		,56	,914
	Students	.050	,30	1,129
Electrodynamics	Teachers		,78	1,039
	Students	-	,30	,801
Mechanics	Teachers		,72	,851
	Students	-	,30	1,081
Atomic / nuclear physics	Teachers		,59	,979
	Students	-	,10	,912
Astronomy / space system	Teachers		,16	1,051
	Students	-	,45	,826
Earth sciences	Teachers		,63	,833
	Students	<.001	,05	,826
Mathematics	Teachers		,25	,880
	Students	.016	1,00	1,522
Interdisciplinarity	Teachers		1,50	1,164
	Students	.038	1,40	1,314
Current scientific research	Teachers		1,19	1,281
Consequences of technological	Students	-	,95	1,146
developments	Teachers		1,00	1,414
	Students	.011	,65	,933
History of the sciences	Teachers		,72	1,326
	Students	-	, 1,50	1,357
Ethics / values	Teachers		,94	1,458

 Table 18: Mean and significance values regarding the priority-practice difference between groups concerning fields and perspectives.

Categories regarding qualifications	Group	Sig. Values	Mean values	Std. Deviation
Mativation and interact	Students	-	1,10	1,210
Motivation and Interest	Teachers		1,22	1,211
Critical quartianing	Students	.028	1,20	1,436
	Teachers		1,13	1,212
Acting reflectedly and reconnichly	Students	.016	1,00	1,556
Acting reflectedly and responsibly	Teachers		1,34	1,181
Knowledge about science-related	Students	.001	,40	1,231
occupations	Teachers		1,00	1,295
Creatialized knowledge	Students	.008	,55	,945
Specialized knowledge	Teachers		,56	1,162
Comprohension / understanding	Students	-	1,05	1,191
comprehension / understanding	Teachers		1,22	1,289
Applying knowledge, thinking	Students	.001	1,40	1,465
creatively / abstractly	Teachers		1,47	1,436
Judgement /opinion-forming /	Students	.002	1,35	1,531
reflection	Teachers		1,25	1,586
Finding information	Students	.002	,60	1,231
	Teachers		1,06	1,190
Deading comprohension	Students	.019	,65	1,268
Reading comprehension	Teachers		,91	,928
Communication skills	Students	.027	,80	1,436
Communication skills	Teachers		,91	1,201
Social skills (toomwork	Students	-	,85	1,182
Social skills / tearnwork	Teachers		1,16	1,273
Empathy / sensibility / emotional	Students	.027	,80	1,240
skills	Teachers		,91	1,254
Perception / awareness /	Students	.032	,90	1,021
observation	Teachers		,84	,987
Formulating scientific questions /	Students	.015	,85	1,565
hypotheses	Teachers		1,28	1,373
Exportmonting	Students	-	,90	1,410
Experimenting	Teachers		1,09	1,058
Analysing / drawing conclusions	Students	.017	1,10	1,210
Analysing / urawing conclusions	Teachers		1,19	1,120
Working self-dependently /	Students	.028	1,20	1,196
structuredly	Teachers		1,22	1,039

 Table 19: Mean and significance values regarding the priority-practice difference between groups concerning qualifications.

Categories regarding methods	Group	Sig. Values	Mean values	Std. Deviation
Cooperativa Learning	Students	-	,65	,988
cooperative Learning	Teachers		1,09	1,027
Learning in mixed aged classes	Students	-	,60	,883
Learning in mixed-aged classes	mixed-aged classes Teachers		,75	1,270
Interdisciplinany learning	Students .026		1,05	1,234
Interdisciplinary learning	Teachers		1,25	1,244
	Students	.009	1,00	1,257
inquiry-based science learning	Teachers		1,13	1,362
Learning at stations	Students	-	,10	1,334
Learning at stations	Teachers		,84	1,322
Polo alor	Students	.042	,75	,967
Role play	Teachers		,97	,967
Discussion (debate	Students	-	,75	,967
Discussion / debate	Teachers		1,03	1,031
Lising now modia	Students	.034	,35	,671
Using new media	Teachers		,75	1,320

Table 20: Mean and significance values regarding the priority-practice difference between groups concerning methods.

5.2 Results part II

5.2.1 Numbers of completed form sheets concerning part II of the questionnaire

In order to identify concepts regarding science education that are considered important, the participants were in part II of round 2 asked to combine from the given set of 80 categories those categories that seem especially important to them *in their combination*. The results of the hierarchical cluster analyses are based on the form sheets which the participants were asked to fill out in the second part of the questionnaire.

None of our 54 participants have filled more than one combinations although we asked them too.

5.2.2 – Hierarchical cluster analysis

The identification and content-related profiling of conceptions about desirable science education was based on hierarchical cluster analyses of the data of the total sample collected in the second part of round two and took place in several consecutive steps.

Despite the caracteristics of the sample (small size) and the questionnaire (large number of items), the clustering solution presents itself as quite clear. It should be noted that for the second form, there were 2 dropouts, and every participant only completed 1 sheet (N = 54).

Furthermore, the analysis included only the categories that were part of the Interim Report, disregarding basic subject-based contexts and disciplines.

5.2.2.1 - Clustering on the bases of the different categories

In the first step of the cluster analytical procedure, structurally similar responses were gradually summarized – first into smaller, then subsequently into larger clusters – as is typical of the HCA procedure. After excluding solutions featuring extremely small or large clusters and after considering aspects of content and coherence, a two-cluster solution rendered the best possible result. The dendrogram presented shows the steps of clustering the categories in the course of the hierarchical cluster analysis.

	Kombination skalierter Abstands-Cluster 0 5 10 15 20 25
81	
81 Everydaylife	10
Everydaylife A	
Atomicnuclearphysics	54
Astronomyspacesystem	55
Technology	9
Ecology	46
Earthsciences	56
Environment	35
Terminology	27
Actingreflectedlyandresp	65
Safetyandrisks	37
Consequencesoftechnolog	
Ethicsvalues	62
Applyingknowledgethinking	19
Chemicalreactions	21
Generalandiporganic	47
Societypublicconcerns	
Matterineverydaylife	33
Judgementopinionformingrefl	70
Currentscientificresearch	59
Formulatingscientificquestion	
Analysingdrawingconclusions	79
Naturenaturalphenomena	8
Healthmedicine	32
Humanbiology	
Sciencebiology	
Biochemistry	50
Organicchemistry	48
Sciencechemistry	16
Sciencephysics	17
Scienceinterdisciplinarity	18
Comprehensionunderstanding	68
Models	26
Analyticalchemistry	49
Mechanics	53
Experimenting	78
Structurefunctionproperties	20
Interdisciplinarity	58
> Energy	22
ScientificInquiry	28
Educationgeneralpersona	
Motivationandinterest	63
Studentsinterests	4
Occupationcareer	14
Occupationsoccupatio	
Thermodynamics	51
Electrodynamics	24
Industrialerasses	36
Specializedkpowledge	67
Empathysensibilitvemotionalskills	75
Foodnutrition	31
Socialskillsteamwork	74
Curriculumframework	5
Evolutionarybiology	44
Botany	39
Microbiology	43
Zoology	40
Neurobiology	45
Globalreferences	
System	23
Interaction	24
Cycleofmatter	
Knowledgeaboutsciencerela	
Intellectueleeseeeelitudevel	
Outofschoollearning	6
Mathematics	57
Geneticsmolecularbio	42
Perceptionawarenessobservation	76
Developmentgrowth	25
Communicationskills	73
Workingselfdependentlystructu	80
Limitsofscientificknowledge	29
Readingcomprehension	72
Findinginformation	71
Mediacurrentissues	7
Historyofthesciences	61
0	

5.2.2.2 – Cluster-analytically identified conceptions regarding desirable science education

As the clusters in our dendrogram cannot be interpreted to identify concepts of science education, we will draw on the FUB results.

Following we present the results of the cluster analyses obtained by the FUB team and we will use the concepts developed by the FUB team (Schulte & Bolte, 2012).

Cluster A	Cluster B	Cluster B				
Emotional personality	. Intellectual personality development	Education / general				
development	 Science - interdisciplinarity 	personality development				
 Media / current issues 	Interdisciplinarity	 Students' interests 				
 Global references 	 Current scientific research 	 Motivation and interest 				
 Empathy / sensibility 	Scientific inquiry	Everyday life				
 Perception / awareness / 	 Critical questioning 	 Society / public concerns 				
observation	 Rational thinking / analysing / drawing 	 Nature / natural 				
 History of the sciences 	conclusions	phenomena				
 Out-of-school learning 	 Applying knowledge / creative and abstract 	Comprehension /				
Curriculum framework	thinking	understanding				
 Communication skills 	 Factual knowledge 	 Acting reflectedly and 				
 Reading comprehension 	 Formulating scientific questions / 	responsibly				
 Finding information 	hypotheses	 Judgement / opinion- 				
 Social skills / teamwork 	Terminology	forming / reflection				
 Occupations / occupational 	 Matter / particle concept 	Ethics / values				
fields	 Structure / function / properties 	 Food / nutrition 				
 Knowledge about science- 	Chemical reactions	• Health				
related occupations	Experimenting	Medicine				
 Occupation / career 	Models	 Matter in everyday life 				
 Earth sciences 	 Limits of scientific knowledge 	Environment				
 Industrial processes 	 Technology 	 Consequences of 				
Cycle of matter	 Technical devices 	technol. developments				
 Development / growth 	. System	 Safety and risks 				
	Interaction	 working self-dependently 				
	Energy	/ structuredly / precisely				
	Mathematics					
n _{cat} = 19	n _{cat} = 23	n _{cat} = 18				
n _{cases} = 494	n _{cases} = 1347	n _{cases} = 1335				
n% _{cases} = 15,6%	n% _{cases} = 42,4%	n% _{cases} = 42,0%				

Basic subject-based contexts and disciplines (not included in cluster analysis)						
Subject-based contexts:	Disciplines:					
 Science – biology Science – chemistry Science – physics 	 Botany Zoology Human biology Genetics / molecular biology Evolutionary biology 	 Neurobiology Ecology Microbiology Inorganic and general chemistry Organic chemistry Analytical chemistry 	 Biochemistry Thermodynamics Electrodynamics Mechanics Atomic and nuclear physics Astronomy / space 			

Table 23: Distribution of the categories among the clusters of the three-cluster solution

Source: (Schulte & Bolte, 2012).

Cluster-analytically identified conceptions regarding desirable science education

On the basis of the previous considerations, three statistically identified clusters can be rendered into concepts regarding desirable science education. The three concepts are titled and described in the following.

Concept A:

Awareness of the sciences in current, social, globally relevant and occupational contexts relevant in both educational and out-of-school settings

Concept A (Awareness of the sciences in current, social, globally relevant and occupational contexts relevant in both educational and out-of-school settings) refers to an engagement with the sciences within the frame of current, social, globally relevant, occupational and both educational and out-of-school contexts, enhancing emotional personality development and basic skills. The impressions a person gets through engaging with topics and associated science-related questions from his or her environment influence both the person's sensibility and his or her attitudes towards the sciences. Dealing with scientific issues or phenomena in out-of-school or social and public contexts respectively also facilitates conscious experiences of scientific phenomena, scientifically precise observation and cognitive ability. Moreover, basic and professionally relevant skills such as finding, interpreting and communicating information can be enhanced in this way. Suggestions for this kind of engagement and education are amongst others provided e.g. by current issues or media coverage. Dealing with the history of the sciences especially reveals how findings and methods of the sciences enable, enhance and bring forward research in the natural sciences. This shows moreover how historical science-related developments are still linked to applications in industry and technology, how these applications changed the world and how they influence our professional and everyday life.

The cluster analytical calculations of concept A lead to the grouping of the following categories:

Situations, contexts, motives:

Emotional personality development, Media / current issues, Global references, Occupation / career, Out-of-school learning, Curriculum framework

(Basic) concepts, themes and perspectives:

History of the sciences, Occupations / occupational fields, Industrial processes, Cycle of matter, Earth sciences, Development / growth

Qualifications:

Empathy / sensibility, Perception / awareness / observation, Social skills / teamwork, Knowledge about science-related occupations, Communication skills, Finding information (Schulte & Bolte, 2012).

Concept B: Intellectual education in interdisciplinary scientific contexts

Concept B (Intellectual education in interdisciplinary scientific contexts) refers to an engagement with the sciences, their terminology, their methods, their basic concepts, their interdisciplinary relations, their findings and their perspectives, which enhance individual intellectual personality development. Dealing with the sciences serves in this course not only the acquisition of science-related basic knowledge but also helps to understand fundamental findings and the process of gaining knowledge in the sciences. Moreover, dealing with questions and topics of the sciences helps to comprehend and follow (empirical and experimental) scientific research methods, facilitates analytical abilities and fosters the ability to take differentiated perspectives. In addition, an engagement with current scientific research reveals not only how findings and methods of the sciences enable, enhance and support both scientific research and its applications, but also how scientific research is interconnected interdisciplinarily.

The cluster analytical calculations of concept B lead to the grouping of the following categories:

Situations, contexts, motives:

Intellectual personality development, Science - interdisciplinarity, Technology

(Basic) concepts, themes and perspectives:

Interdisciplinarity, Scientific inquiry, Current scientific research, Limits of scientific knowledge, Terminology, Matter / particle concept, Structure / function / properties, Chemical reactions, Models, Technical devices, System, Interaction, Energy, Mathematics

Qualifications:

Applying knowledge / creative and abstract thinking, Formulating scientific questions / hypotheses, Factual knowledge, Critical questioning, Analysing / drawing conclusions, Experimenting (Schulte & Bolte, 2012).

Concept C:

General science-related education and facilitation of interest in contexts of nature, everyday life and living environment

Concept C (General science-related education and facilitation of interest in contexts of nature, everyday life and living environment) refers to a science-related engagement with everyday life and living environment issues that takes up and promotes students' interests, enhancing general personality development and education. In this way, aspects such as opinion-forming and acting reflectedly and responsibly are particularly important. Dealing with topics from the natural and technological living environment shows how scientific research, scientific applications and scientific phenomena influence both public and personal life. Another important aspect of this concept is engaging with different values and perspectives as well as reflecting on both personal and public deliberations and course of action. Moreover, this concept refers to facilitating the motivation for scientific inquiry beyond school, including aspects such as realizing and shaping one's own interests. Dealing with scientific issues and phenomena within the contexts of social and public fields such as technological developments, their consequences and issues about safety and risks enhances in particular the students' own abilities to judge and both critically reflect and rationally account for their own actions.

The cluster analytical calculations of concept C lead to the grouping of the following categories:

Situations, contexts, motives:

Society / public concerns, Students' interests, Education / general personality development, Nature / natural phenomena, Everyday life, Medicine

(Basic) concepts, themes and perspectives:

Safety and risks, Consequences of technological developments, Ethics / values, Food / nutrition, Health, Matter in everyday life, Environment

Qualifications:

Acting reflectedly and responsibly, Judgement / opinion-forming / reflection, Motivation and interest, Comprehension / understanding, working self-dependently / structuredly / precisely (Schulte & Bolte, 2012).

6 Discussion

6.1 Discussion part I

The results of the analyses presented in chapter 5.1 show that regarding the *priority assessments* – apart from some exceptions - that the different sample groups generally consider the same categories as relevant and important. However, as the tables also showed, the mean values differ in a number of pair comparisons among the sample groups in a statistically significant way from each other.

Regarding *practice assessments*, the category which presents the largest number of differences concerns is the "Qualifications". It seems this is the area where teachers and students most disagree.

In the part of *priority-practice differences*, our first, special attention will be paid to those aspects that feature particularly large or small differences between the assessments of their priority and their actual realization in educational practice because these extreme difference values inform about especially big or small discrepancy between priority and reality.

The calculated priority-practice differences showed that many categories feature large differences between their priority and practice values.

6.2 Discussion part II

The high variance and low sample size doesn't allow for a - at least at first – interpretable results. More data should be collected in order to construct and interpret concepts concerning desirable science education.

References

- Bolte, C. (2003). Chemiebezogene Bildung zwischen Wunsch und Wirklichkeit Ausgewählte Ergebnisse aus dem zweiten Untersuchungsabschnitt der curricularen Delphi-Studie Chemie. *ZfDN*, *9*, 27–42.
- Bolte, C. (2007). How to promote scientific literacy different views from German experts. *Proceedings of the Annual Meeting of the National Association for the research on Science Education (NARST).* New Orleans.
- Häußler, P., Frey, K., Hoffmann, L., Rost, J., & Spada, H. (1980). *Physikalische Bildung: Eine curriculare Delphi-Studie*. *Teil I: Verfahren und Ergebnisse. IPN-Arbeitsbericht* 41.

Institut für die Pädagogik der Naturwissenschaften Kiel. IPN-Arbeitsbericht 41. Kiel: IPN.

- Linstone, H. A., & Turoff, M. (Hrsg.). (1975). *The Delphi Method: Techniques and Applications*. Reading, Mass. u.a: Addison-Wesley.
- Mayer, J. (1992). Formenvielfalt im Biologieunterricht: Ein Vorschlag zur Neubewertung der Formenkunde. Institut für die Pädagogik der Naturwissenschaften an der Universität Kiel. IPN-Schriftenreihe 132. Kiel: IPN.
- Paiva, J., Morais, C. & Barros, J. (2011). PROFILES Curricular Delphi Study on Science Education. Interim Report on the First Round of the UP Working Group. *unpublished*.
- PROFILES Consortium. (2010). FP7 Negotiation Guidance Notes Coordination and Support Actions. Annex I Description of Work. *unpublished*.
- Schulte, T., & Bolte, C. (2011). PROFILES Curricular Delphi Study on Science Education. Interim Report on the First Round of the FUB Working Group. *unpublished*.
- Schulte, T., & Bolte, C. (2012). PROFILES Curricular Delphi Study on Science Education. Interim Report on the Second Round of the FUB Working Group. *unpublished*.